Sıra | DOSYA ADI | Format | Bağlantı |
---|---|---|---|
01. | Products Leather Treated Wastes | pptx | Sunumu İndir |
Transkript
Recycling Leather Wastes in carton Industry Prof. : Ola A. MohamedTanning materials and leather technologyNational research center
-Leather industry is one of the oldest industries all over the world. Leather is a natural material that, has been used by man for thousands of years.. - Leather industry is one of the polluting industries because ; generation of huge amount of liquid and solid wastes, also emits obnoxious smell.- So research must be direct towards investigate the production of useful materials from different kinds of leather wastes.
Process Flow of Leather Production
Solid wastes generated by the leather industry of may be classified as follows:1. Wastes from untanned hides/skins (trimmings, fleshing wastes).2. Wastes from tanned leather (shaving wastes, buffing dust).3. Wastes from dyed and finished leather (trimmings from leather).Solid wastes
ratio for sheep and goat ratio for light bovine leatherratio for heavy bovine(t / million m² finished (t / million m² finished leather )(t / million finished leather)180 513 171 Unusable WB splits, WB shavings and WB trimmings151.3 83.2 27.7 Dry leather wastes )trimmings ,Table 1: waste ratios regarding the leather manufacturing process
Figure 1 : wastes generated by the leather manufacturing - % of world areas
ContainerboardThe Pulp & Paper IndustryPrinting and Writing PaperNewsprint Tissue ProductsBoxboardMarket Wood Pulp
◦ - The word paper comes from the ancient Egyptian writingmaterial called papyrus, which was woven from papyrus plants. Papyrus was produced as early as 3000 BC in Egypt, and in ancient Greece and Rome .◦ -Paper was invented in Ancient China by Ts'ai Lun in AD 105. ◦ - Global pulp and paper industry dominated by United States, Canada, Sweden, Finland and East Asian countries )such as Japan(◦Australasia and Latin America also have significant pulp andpaper industries◦Russia and China expected to be key in the industry's growthover the next few years for both demand and supply
Paper production processThe production process can be divided into 7 sub-processes: -Raw materials processes. -Wood-yard.-Fibre line.-Chemical recovery.-Bleaching.-Paper production. - products and recycling.
Dangers of Fire )United States statistic( -Someone died in a fire every 3 hrs and someone was injured every 37 minutes. -401,000 home fires .-Residential fires caused more than $6.1billion in property damage.
What is a Flame Retardant? - A chemical added to combustible materials to render them more resistant to ignition. - Minimizes the risk of fire starting. - increases the safety of lives and property.
The main families of flame retardants are based on compounds containing :-Halogens )Bromine and Chlorine( .-Phosphorus -Nitrogen -Minerals )based on aluminium and magnesium( - Others )like Borax, Sb2O3 , nanocomposites(
-In this study, leather wastes were grinded to nanosize, treated with flame retardants, and then added as filler during the paper sheets formation. -Using of these wastes help in reduce their hazards and give an economical benefit to paper making and an effective solution for paper firing.
Type of Tests Blank Paper sheet with6%UMLPaper sheet with9% UMLPaper sheet with12% UMLBasis weight( g/m2) 195.55± 4.56 201± 3.97 201.16± 5.4 200.7± 5.09Tear (mN.m2/g) 0.24± 0.59 0.64± 0.055 0.70± 0.12 0.75± 0.17Burst (kPa.m²/g) 3.40± 0.22 3.14± 0.44 3.48± 1.49 2.98± 0.26Thickness (µm) 240± 7.83 238.8± 5.87 281± 28.88 261.8± 8.88Air permeability(ml/S.cm2.Pa)0.12± 0.015c 0.19± 0.027 0.24± 0.029 0.25± 0.014Opacity (%) 99.41± 0.16 99.31± 1.03 99.62± 0.199 99.2± 0.88Brightness 43.61± 0.01 44.87± 0.65 45.24± 1.1 44.35± 2.40Breaking length (km) 4.35± 3.6 5.37± 8.63 5.20± 6.71 5.2± 9.5Elongation (mm) 1.87± 13.16 2.67± 14.70 2.39± 12.12 2.47± 17.36E-modules (Gpa) 6.2±3.61 5.44± 7.93 4.66± 4.1 4.94± 5.5Table 2; Physical and mechanical properties of blank paper sheet as well as the prepared paper sheet containing different concentrations of unmodified leather, 6, 9, and 12 %.
Type of Tests Blank Paper sheet with6%MLIPaper sheet with9% MLPaper sheet with12% MLIBasis weight( g/m2) 195.55± 4.56 198.4± 3.84 193.97± 2.63 199.37± 2.54Tear (mN.m2/g) 0.24± 0.59 0.71± 0.06 0.65± 0.042 0.79± 0.11Burst (kPa.m²/g) 3.40± 0.22 3.28± 0.21 2.93± 0.27 2.89± 0.18Thickness (µm) 240± 7.83 259.8± 4.1 261.8± 3.29 273.4± 5.10Air permeability(ml/S.cm2.Pa)0.123± 0.015 0.243± 0.013 0.293± 0.013 2.8± 8.9Opacity (%) 99.41± 0.16 97.88± 0.143 99.73± 0.12 99.69± 025Brightness 43.61± 0.01 44.79± 0.91 44.68± 0.72 44.99± 1.08Breaking length (km) 4.35± 3.6 5.61± 0.48 4.5± 0.47 4.77± 0.48Elongation (mm) 1.87± 13.16 2.61± 0.086 2.46± 0.46 2.68± 0.69E-modules (Gpa) 6.2±3.61 5.23± 0.36 4.78± 0.25 4.3± 0.49Table 3; Physical and mechanical properties of blank paper sheet as well as the prepared paper sheet containing different concentrations of modified leather (MI), 6, 9, and 12 %.
Type of Tests Blank Paper sheet with6%MLIIPaper sheet with9% MLIIPaper sheet with12% MLIIBasis weight( g/m2) 195.55± 4.56 200.28± 4.22 203.38± 3.54 199.37± 2.54Tear (mN.m2/g) 0.24± 0.59 0.80± 0.145 0.76± 0.10 0.712± 0.69Burst (kPa.m²/g) 3.40± 0.22 3.27± 0.16 3.09± 0.178 2.48± 1.11Thickness (µm) 240± 7.83 259.8± 4.1 261.8± 3.29 273.4± 5.10Air permeability(ml/S.cm2.Pa)0.123± 0.015 0.218± 0.18 0.212± 0.098 0.25± 0.168Opacity (%) 99.41± 0.16 99.71± 0.112 98.96± 0.86 98.91± 0.17Brightness 43.61± 0.01 45.83± 0.733 46.69± 0.425 46.65± 0.504Breaking length (km) 4.35± 3.6 5.27±8.85 5.41± 7.72 5.8± 0.48Elongation (mm) 1.87± 13.16 2.16±14.92 2.6± 19.13 2.21± 0.435E-modules (Gpa) 6.2±3.61 5.38±5.19 5.33± 4.26 4.77± 0.269 Table 4; Physical and mechanical properties of blank paper sheet as well as the prepared paper sheet containing different concentrations of modified leather (MII), 6, 9, and 12 %.
Sample Flame time (s) Burning Length (mm)Blank 4 150Untreated3% 6 1506% 7 1509% Not ignited -12% Not ignited -Treated I 3% 6.5 1506% 7 1509% Not ignited -12% Not ignited -Treated II3% 6 1506% 8 -9% Not ignited -12% Not ignited -Table, (5) : Flame retardant and burning length of the paper sheets
TGA of a) blank, b) 3% untreated leather, c) 6% untreated leather, d) 9% untreated leather, e) 12% untreated leather
TGA of a) blank, b) 6% treated I, c) 9% treated I, d) 12% treated I
TGA of a) paper sheet as well as, b) 3% treated II, c) 6% treated II, d) 12% treated II
SEM images of : a( Blank paper sheet as well as paper sheet with untreated and treated b) c) d )a)
Conclusion: - These results showed that the addition of leather wastes has improved significantly the flammability properties, in the same time didn’t have a bad effect on the visual, physical and mechanical properties.- This approach can be also extended to various fields of chemistry such as polymers and rubbers .